

Intersection Design

Leah Ness, Craig Hardy and Eric Sorensen

OVERVIEW

- TYPES OF INTERSECTIONS
- SCOPING COORDINATION
- INTERSECTION EVALUATION
- HORIZONTAL AND VERTICAL LAYOUTS
- DESIGN COORDINATION
- CONSTRUCTION STAGING
- J-TURN INTERSECTIONS
- QUESTIONS

TYPES OF INTERSECTIONS

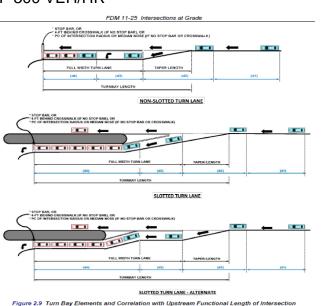
- UNCONTROLLED
- STOP CONTROLLED
- SIGNALIZED
- ROUNDABOUT
- J-TURN

SCOPING COORDINATION

- TYPE OF INTERSECTION
 - RAB REQUIRES REVIEWER
- TRAFFIC DATA COLLECTION
- SIGNAL PLANS
 - PERMANENT
 - TEMPORARY
- TMP

• TRAFFIC DATA

- TURNING MOVEMENT CLASSIFICATION COUNTS
 - PEAK HOUR COUNTS
 - 12 HOUR COUNTS
- ORIGIN-DESTINATION STUDIES
- HISTORICAL CRASH DATA
- TRAFFIC FORECASTS



LANE DEDICATION

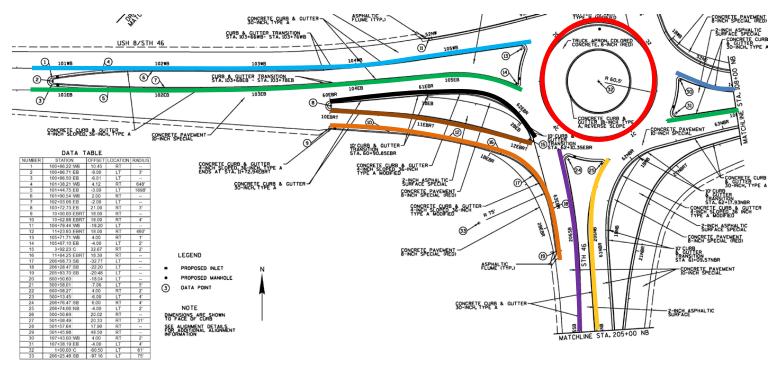
- TRAFFIC VOLUMES
 - LEFT TURN
 - SINGLE EXCLUSIVE LEFT TURN = MINIMUM OF 100 VEH/HR
 - DUAL EXCLUSIVE LEFT TURNS = MINIMUM OF 300 VEH/HR
 - RIGHT TURN
 - EXCLUSIVE RIGHT TURN = MINIMUM OF 300 VEH/HR
- STORAGE LENGTHS

)	Perception-Reaction Distance d1 (feet) des (min)		Maneuver Distance		
			d2 (feet) des (min)	d3 (feet) des (min)	
Speed mph [B]	Rural ICI IEI	Urban / Suburban [C][F]	[C] [G]	Turn lane [D] [H]	Thru lane
25	90 (55)	55 (35)	75 (75)	25 (25)	100 (75)
30	110 (65)	65 (45)	95 (95)	75 (50)	145 (105)
35	130 (75)	75 (50)	110 (110)	100 (75)	195 (145)
40	145 (90)	90 (60)	130 (130)	150 (100)	255 (185)
45	165 (100)	100 (65)	150 (150)	200 (150)	325 (235)
50	185 (110)	110 (75)	165 (165)	250 (175)	400 (290)
55	200 (120)	120 (80)	185 (185)	325 (225)	485 (355)
60	220 (130)	130 (90)	205 (205)	400 (300)	580 (420)
65	240 (145)	145 (95)	225 (225)	475 (350)	680 (495)
70	255 (155)	155 (105)	240 (240)	575 (425)	785 (575)

FDM 11-25 Intersections at Grade

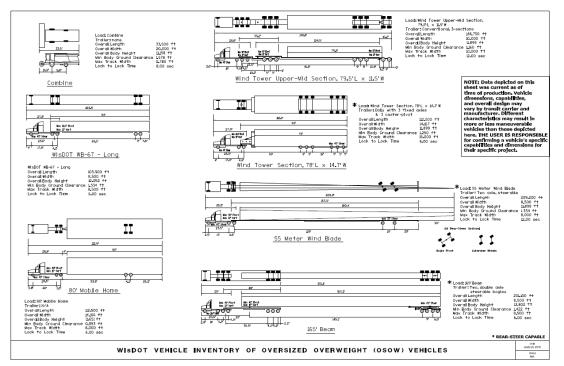
- INTERSECTION CONTROL EVALUATIONS
 - SAFETY
 - CRASH PATTERNS
 - OPERATIONAL ANALYSIS
 - ISOLATED INTERSECTION VERSUS CORRIDOR ANALYSIS
 - PRACTICAL FEASIBILITY

- INTERSECTION CONTROL EVALUATIONS
 - ROW IMPACTS
 - COSTS
 - PEDESTRIANS AND BICYCLISTS
 - OSOW FREIGHT NETWORK
 - ENVIRONMENTAL IMPACTS



- TRUCK TURNING MOVEMENTS
 - TRUCK APRONS
 - ACCESS LOCATIONS
 - GAS STATION TANKERS
- PEDESTRIAN AND BICYCLE
 ACCOMMODATIONS
 - CROSSWALK AND RAMP LOCATIONS
 - WIDTHS OF BLVDS AND SIDEWALKS/MULTI-USE PATHS

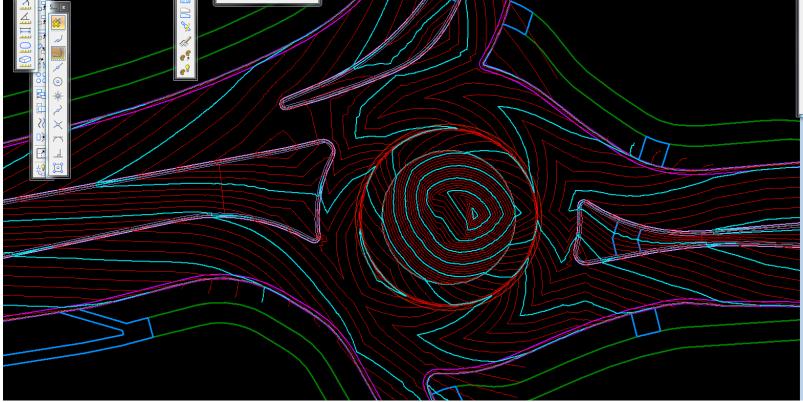
ALIGNMENTS/PROFILES

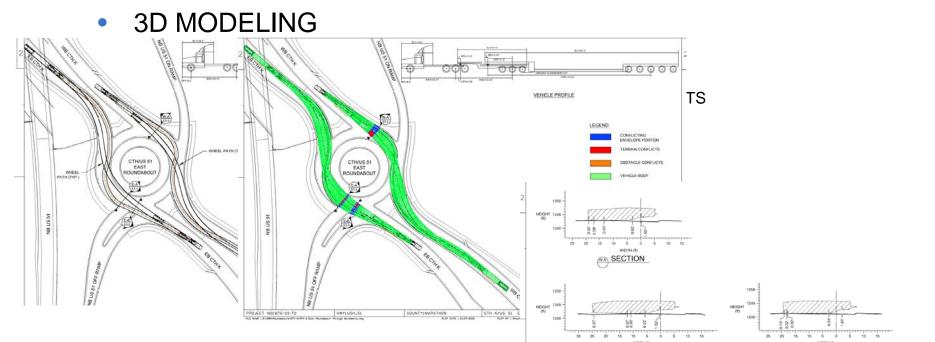

- MAIN EB/WB AND NB/SB
- CIRCULATORY ROADWAY
- RIGHT SIDE CURB LINES
- BYPASS LANES

OSOW RESTRICTIONS

- DETERMINE DESIGN VEHICLE DIMENSIONS AND REQUIRED MOVEMENTS
 - CONTACT LOCAL BUSINESSES
 - WHAT STANDARD OSOW VEHICLES TO USE?

OSOW RESTRICTIONS

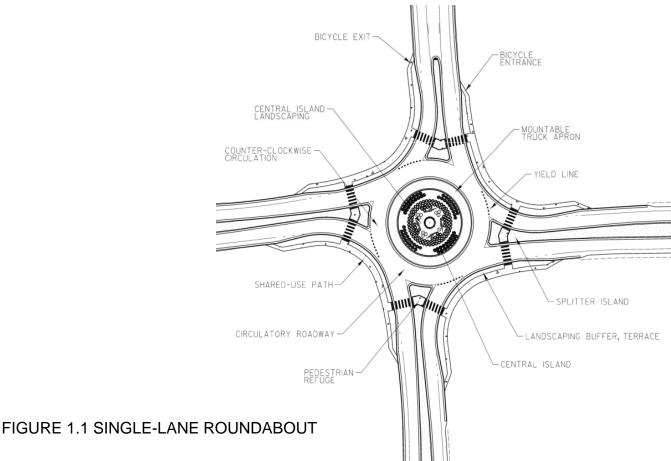

- CROWN IN INTERSECTION
- REDUCED CURB HEAD HEIGHT FOR TRUCK APRON


• HOW TO CHECK VERTICAL CLEARANCE

• 3D MODELING - SURFACE

HOW TO CHECK VERTICAL CLEARANCE

(EA) SECTION



SSOCIATE

SECTION

ROUNDABOUT DESIGN

DEFINING PHYSICAL FEATURES

ROUNDABOUT DESIGN

DEFINING PHYSICAL FEATURES

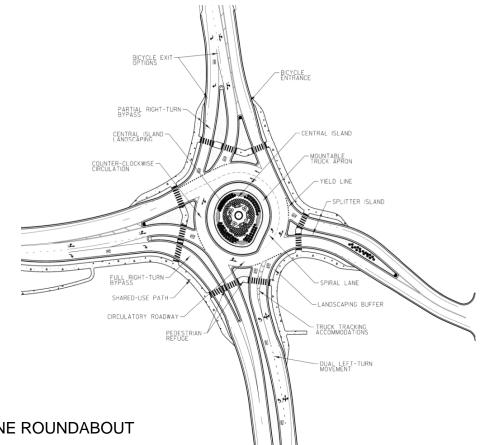
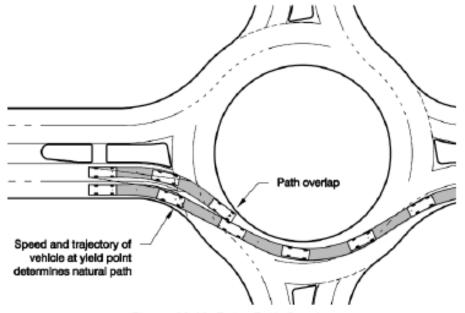
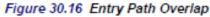
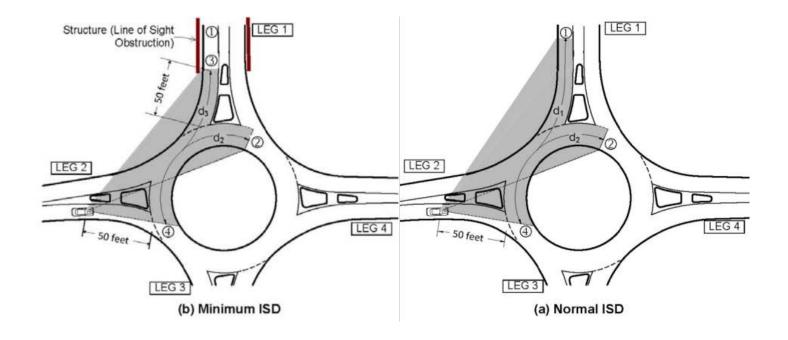




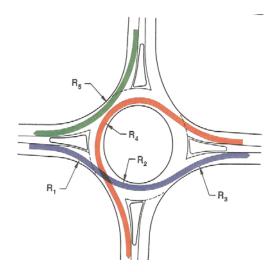
FIGURE 1.2 MULTI-LANE ROUNDABOUT

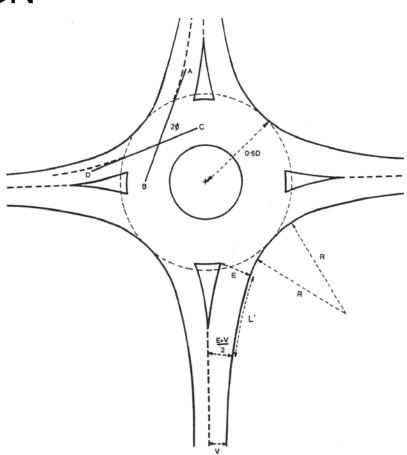
- WisDOT ROUNDABOUT DESIGN LEVELS
- HIGH SPEED APPROACHES
 - CURVILINEAR AND TANGENTIAL APPROACHES
- PATH OVERLAP



ROUNDABOUT DESIGN

INTERSECTION SIGHT DISTANCE

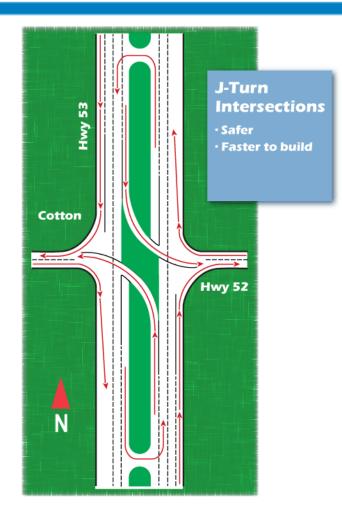




- DESIGN GUIDANCE FOR LEGAL TRUCKS
 - CASE 1
 - » ALL TRUCKS TO ENCROACH INTO ADJACENT LANES AS THEY APPROACH, ENTER, CIRCULATE, AND EXIT
 - CASE 2
 - » ACCOMMODATE TRUCKS IN-LANE AS THEY APPROACH AND ENTER, BUT TRACKS CAN ENCROACH INTO ADJACENT LANES AS THEY CIRCULATE AND EXIT
 - CASE 3
 - » ACCOMMODATE TRUCKS IN-LANE AS THEY APPROACH AND TRAVERSE THE ENTIRE INTERSECTION

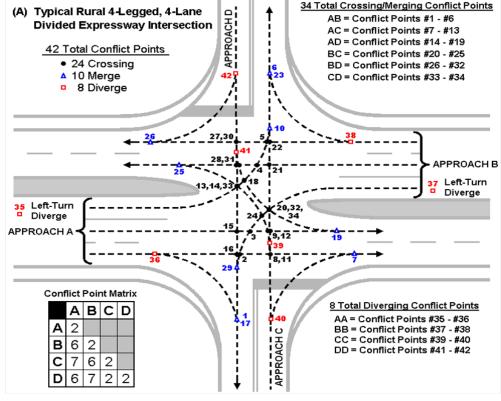
- CRITICAL PARAMETERS
 - HALF WIDTH
 - ENTRY WIDTH
 - EFFECTIVE FLARE
 - ENTRY RADIUS
 - ENTRY ANGLES
 - FAST PATHS

- SCHEDULE
 - TRAFFIC COUNTS
 - TRAFFIC FORECASTS
 - » PAVEMENT DESIGN REPORT
- 60% ROUNDABOUT DESIGN COMPLETED PRIOR TO DSR
 - NEED CRITICAL DESIGN PARAMETERS TABLE SIGNED BY REVIEWER


CONSTRUCTION STAGING

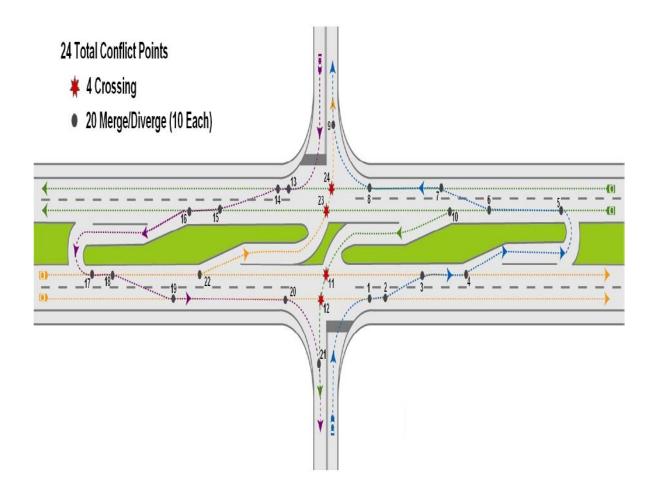
- TEMPORARY SIGNALS
 - LANE CONFIGURATION AND WIDTHS
 - TURNING MOVEMENTS
 - TIMINGS
- ROUNDABOUT STAGING
 - CANNOT FUNCTION AS A ROUNDABOUT UNTIL LEGALLY SIGNED AND MARKED
 - TEMPORARY ROAD/INTERSECTION

WHAT IS A J-TURN INTERSECTION?


- CONSTRUCTED AT INTERSECTIONS WITH MEDIAN SEPARATED ROADWAY
- SIMILAR TO STOP CONTROLLED
- EXPRESSWAY ACCESS IS UNCHANGED
- MINOR ROAD MUST TURN RIGHT
- USE OF MEDIAN U-TURN TO KEEP MINOR ROAD ACCESS

WHY CONSIDER A J-TURN?

SAFETY



TRADITIONAL INTERSECTION

WHY CONSIDER A J-TURN?

FEWER CONFLICT POINTS

STH 29 – CTH VV, BROWN COUNTY (2013)

ADDITIONAL J-TURNS IN WISCONSIN

WISCONSIN – USH 53/CTH B INTERSECTION (2011)

- 100% REDUCTION IN FATALITIES
- MARYLAND US 301 AND MD 313
 90% REDUCTION IN CRASHES

HISTORIC RESULTS

J-TURN INTERSECTION

J-TURNS (OTHER CONSIDERATIONS)

- POSSIBLE PROBLEMS/CONCERNS
 - DRIVER CONFUSION
 - MEDIAN WIDTH NEEDED FOR LARGE TRUCKS
 - INCREASED TRAVEL TIMES (ESPECIALLY FOR EMERGENCY SERVICE VEHICLES)

INTERSECTION DESIGN

QUESTIONS?

