Presentation Overview

- Interchange Characteristics
- Process for Interchange Type Selection
- Service Interchange
- System Interchange
- New Type of Interchange
- Design Process and Details
- Interchange Attributes to Consider
Interchange Characteristics

- Two main types of interchanges
 - Service Interchange – between a freeway or controlled access facility and a lower class roadway such as an arterial or collector (i.e. diamond)
 - System Interchange – between two or more freeways or controlled access facilities (i.e. cloverleaf)
Interchange Characteristics

- Attributes of interchange type varies
 - Traffic operations
 - Safety
 - Physical impacts (R/W)
 - Construction cost
 - Constructability
Process for Interchange Type Selection

- Process for interchange type selection
 - Data Collection
 - Planning Framework
 - Identify and Develop Concepts
 - Evaluate and Screen Alternatives
 - Select Preferred Alternative
Process for Interchange Type Selection

• Additional items to consider
 – Identify and understand key project issues
 – Design creativity and context sensitivity
 o required to develop feasible solutions
 – Maintain fiscal feasibility
 – Maintain/enhance local access in reconstructing urban system ramp interchanges
 – Incorporating exclusive HOV lanes or ramps
 o Complicates the design and increases cost
 – Constructability
 o Reconstruction typically requires maintaining all movements
Service Interchange

• Urban and suburban areas (tight R/W constraints)
 – Single point design creativity and context sensitivity
 o One intersection vs. two along local roadway
 o Expensive
 – Compressed or tight diamond
 o Intersections spaced 250’-400’ apart
 o Similar footprint to SPDI
 – Operational characteristics
 – Determine number of lanes
 – Traffic operations are key to success
Service Interchange

- Single point diamond interchange (SPDI)
Service Interchange

- Urban and suburban areas (tight R/W constraints)
 - Single point design creativity and context sensitivity
 - One intersection vs. two along local roadway
 - Expensive
 - Compressed or tight diamond
 - Intersections spaced 250’-400’ apart
 - Similar footprint to SPDI
 - Operational characteristics
 - Determine number of lanes
 - Traffic operations are key to success
Service Interchange

- Compressed or tight diamond interchange
Service Interchange

- Urban and suburban areas (tight R/W constraints)
 - Implement selection process
 - 12 points for the design of system interchanges
 - Maintain route continuity
 - Maintain basic number of lanes
 - Provide lane balance and continuity
 - Maintain appropriate ramp spacing
 - Design ramps for freeway speeds
 - Select appropriate interchange types
 - Employ only right-hand entrances and exits
 - Provide single exit at interchanges
 - Provide exits in advance of crossroad
 - Provide decision sight distance in advance of exits
 - Eliminate weaving within interchanges along the mainline
 - Provide designs that can be simply signed
New Type of Interchange

• Diverging diamond
Design Process and Details

• Stakeholders
 – Maintaining authority
 – Traveling public
 – Impacted public
 – Landowners
 – Environment
 – Politics
 – Federal funding
 – Be honest!
Design Process and Details

• Geometrics
 – Iterative process
 – Provide desirables
 • DSD, SSD, etc…
 – Avoid flat spots and crown transitions
 – Rollovers
 – Nearby interchanges
 – Lane balance
 – Barrier concept
 – Adequate signing
 – Structures - construction restrictions to traffic
Design Process and Details

- Traffic
 - Large trucks
 - Avoid off-ramp queueing onto freeway
 - Analysis for staging and permanent conditions

Milwaukee area – Congestion map
Design Process and Details

• Staging
 – Finding the optimal balance
 – Impacts of staging
 • Tie-ins and project length, ROW, utilities
 • Justify expenditure to provide desirable features
 – Over the top first
 – Traffic considerations
 • Seasonal peaks
 • Concurrent projects along corridor
Design Process and Details

• Staging continued…
 – Structures
 • Lateral and vertical clearance
 • Construction joints
 • Future fill/cut at footings
 – Settlement of embankments
 – Design drainage for winter maintenance
 – Early project to eliminate complications
 – Lessons learned
Interchange Attributes to Consider

- Design
 - Type, size:
 - Single point, trumpet, three leg, one quadrant, diamond, cloverleaf, etc...
 - Based on typically 6 warrants
 - Determine # lanes, heavy movements, crash locations
Design continued...

- Utilities
 - Existing? Proposed?
- Space or R/W constraints
- Real estate
- Safety, safety, safety
 - AASHTO Green Book, FDM, AASHTO RDG, MUTCD. How do these affect the design?
Interchange Attributes to Consider

- Users
 - Local facilities
 - Economics
 - Travel times
 - Utilities - NIMBY
 - Multimodal
 - Environmental/recreation
Future Considerations

• Future considerations
 – Additional lanes / interchange capacity
 o Future development in the immediate area
 – Overhead utilities and constructability of structures
 o OSHA requirement for cranes
 o Address in utility coordination
 – Temporary traffic shifts for maintenance and rehab
 o Leave in crossovers used for construction
 o Wider, “beefed up” shoulders necessary?
Future Considerations

- Profile gradient should be steep enough to accommodate future barrier wall when highway expanded.
- Ramp metering
- Ramp spacing between terminals
 - Congestion
 - Queue spillback
 - Stop and go travels
 - Heavy weaving
 - Poor traffic signal progression
Questions????